首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1220篇
  免费   118篇
  国内免费   2篇
  2023年   5篇
  2021年   48篇
  2020年   16篇
  2019年   26篇
  2018年   22篇
  2017年   35篇
  2016年   38篇
  2015年   62篇
  2014年   55篇
  2013年   87篇
  2012年   87篇
  2011年   102篇
  2010年   63篇
  2009年   50篇
  2008年   80篇
  2007年   64篇
  2006年   61篇
  2005年   55篇
  2004年   38篇
  2003年   45篇
  2002年   30篇
  2001年   14篇
  2000年   11篇
  1999年   20篇
  1998年   11篇
  1997年   9篇
  1996年   10篇
  1995年   6篇
  1994年   6篇
  1993年   12篇
  1992年   10篇
  1991年   9篇
  1990年   9篇
  1989年   11篇
  1988年   9篇
  1987年   8篇
  1986年   11篇
  1985年   4篇
  1984年   6篇
  1983年   5篇
  1982年   12篇
  1981年   8篇
  1980年   4篇
  1979年   8篇
  1978年   7篇
  1977年   7篇
  1976年   6篇
  1974年   6篇
  1973年   5篇
  1968年   6篇
排序方式: 共有1340条查询结果,搜索用时 267 毫秒
71.

Cadmium (Cd) is a toxic metal and classified as a carcinogen whose exposure could affect the function of the central nervous system. There are studies that suggest that Cd promotes neurodegeneration in different regions of the brain, particularly in the hippocampus. It is proposed that its mechanism of toxicity maybe by an oxidative stress pathway, which modifies neuronal morphology and causes the death of neurons and consequently affecting cognitive tasks. However, this mechanism is not yet clear. The aim of the present work was to study the effect of Cd administration on recognition memory for 2, 3 and 4 months, neuronal morphology and immunoreactivity for caspase-3 and 9 in rat hippocampi. The results show that the administration of Cd decreased recognition memory. Likewise, it caused the dendritic morphology of the CA1, CA3 and dentate gyrus regions of the hippocampus to decrease with respect to the time of administration of this heavy metal. In addition, we observed a reduction in the density of dendritic spines as well as an increase in the immunoreactivity of caspase-3 and 9 in the same hippocampal regions of the animals treated with Cd. These results suggest that Cd affects the structure and function of the neurons of the hippocampus, which contribute to the deterioration of recognition memory. Our results suggest that the exposure to Cd represents a critical health problem, which if not addressed quickly, could cause much more serious problems in the quality of life of the human population, as well as in the environment in which they develop.

  相似文献   
72.
Circadian rhythm disturbance (CRD) increases the risk of disease, e.g. metabolic syndrome, cardiovascular disease, and cancer. In the present study, we investigated later life adverse health effects triggered by repeated jet lag during gestation. Pregnant mice were subjected to a regular light-dark cycle (CTRL) or to a repeated delay (DEL) or advance (ADV) jet lag protocol. Both DEL and ADV offspring showed reduced weight gain. ADV offspring had an increased circadian period, and an altered response to a jet lag was observed in both DEL and ADV offspring. Analysis of the bones of adult male ADV offspring revealed reduced cortical bone mass and strength. Strikingly, analysis of the heart identified structural abnormalities and impaired heart function. Finally, DNA methylation analysis revealed hypermethylation of miR17-92 cluster and differential methylation within circadian clock genes, which correlated with altered gene expression. We show that developmental CRD affects the circadian system and predisposes to non-communicable disease in adult life.  相似文献   
73.
Organic osmolyte and halide permeability pathways activated inepithelial HeLa cells by cell swelling were studied by radiotracer efflux techniques and single-cell volume measurements. The replacement of extracellular Cl byanions that are more permeant through the volume-activated Cl channel, as indicated byelectrophysiological measurements, significantly decreasedtaurine efflux. In the presence of less-permeant anions, an increase intaurine efflux was observed. Simultaneous measurement of the125I, used as a tracer forCl, and[3H]taurine effluxshowed that the time courses for the two effluxes differed. InCl-rich medium the increasein I efflux was transient,whereas that for taurine was sustained. OsmosensitiveCl conductance, assessed bymeasuring changes in cell volume, increased rapidly after hypotonicshock. The influx of taurine was able to counteractCl conductance-dependentcell shrinkage but only ~4 min after triggering cell swelling. Thistaurine-induced effect was blocked by DIDS. Differences in anionsensitivity, the time course of activation, and sensitivity to DIDSsuggest that the main cell swelling-activated permeability pathways fortaurine and Cl are separate.

  相似文献   
74.
Pineal function is defined by a set of very narrowly expressed genes that encode proteins required for photoperiodic transduction and rhythmic melatonin secretion. One of these proteins is serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase, AANAT), which controls the daily rhythm in melatonin production. Here, pineal-specific expression of the zebrafish aanat-2 (zfaanat-2) was studied using in vivo transient expression analyses of promoter-reporter constructs; this revealed that specificity is determined by two regions located 12 kb away from each other. One is the 5'-flanking region, and the other is a 257-bp sequence, located 6 kb downstream of the transcribed region. This 3'-sequence, designated pineal-restrictive downstream module (PRDM), has a dual function: enhancement of pineal expression and inhibition of extrapineal expression. The former is an autonomic property of PRDM whereas the later function requires interaction with the upstream regulatory region of zfaanat-2. Functional analyses of the PRDM sequence revealed that three photoreceptor conserved elements (TAATC) and a single perfect E-box (CACGTG) are crucial for the dual function of PRDM. These results indicate that pineal specificity of zfaanat-2 is determined by the dual functionality of the PRDM and the interaction between upstream regulatory region and downstream photoreceptor conserved elements and E-box element.  相似文献   
75.
Tenacibaculum maritimum is the etiological agent of marine flexibacteriosis disease, with the potential to cause severe mortalities in various cultured marine fishes. The development of effective preventive measures (i.e. vaccination) requires biochemical, serological and genetic knowledge of the pathogen. With this aim, the biochemical and antigenic characteristics of T. maritimum strains isolated from sole, turbot and gilthead sea bream were analysed. Rabbit antisera were prepared against sole and turbot strains to examine the antigenic relationships between the 29 isolates and 3 reference strains. The results of the slide agglutination test, dot-blot assay and immunoblotting of lipopolysaccharides (LPS) and membrane proteins were evaluated. All bacteria studied were biochemically identical to the T. maritimum reference strains. The slide agglutination assays using O-antigens revealed cross-reaction for all strains regardless of the host species and serum employed. However, when the dot-blot assays were performed, the existence of antigenic heterogeneity was demonstrated. This heterogeneity was supported by immunoblot analysis of the LPS, which clearly revealed 2 major serological groups that were distinguishable without the use of absorbed antiserum: Serotypes O1 and O2. These 2 serotypes seem to be host-specfic. In addition, 2 sole isolates and the Japanese reference strains displayed cross-reaction with both sera in all serological assays, and are considered to constitute a minor serotype, O1/O2. Analysis of total and outer membrane proteins revealed that all strains share a considerable number of common bands that are antigenically related.  相似文献   
76.
BACKGROUND: The tissue-specific expression of an exogenous gene, under the influence of a tissue-specific promoter, has been examined in the past with pro-nuclear injections of the transgene and the development of transgenic mouse models. 'Adult transgenics' is possible with the acute expression of an exogenous gene that is administered to adult animals, providing the transgene can be effectively delivered to distant sites following an intravenous administration. METHODS: The organ specificity of exogenous gene expression in adult mice was examined with a bacterial beta-galactosidase (LacZ) expression plasmid under the influence of the bovine rhodopsin gene promoter. The 8-kb plasmid DNA was delivered to organs following an intravenous administration with the pegylated immunoliposome (PIL) non-viral gene transfer technology. The PIL carrying the gene was targeted to organs with the rat 8D3 monoclonal antibody (MAb) to the mouse transferrin receptor (TfR). RESULTS: The rhodopsin/beta-galactosidase gene was expressed widely in both the eye and the brain of adult mice, but was not expressed in peripheral tissues, including liver, spleen, lung, or heart. Ocular expression included the retinal-pigmented epithelium, the iris, and ciliary body, and brain expression was observed in neuronal structures throughout the cerebrum and cerebellum. CONCLUSIONS: The expression of trans-genes in adult animals is possible with the PIL non-viral gene transfer method. The opsin promoter enables tissue-specific gene expression in the eye, as well as the brain of adult mice, whereas gene expression in peripheral tissues, such as liver or spleen, is not observed.  相似文献   
77.
Aminoglycoside antibiotics that bind to 16S ribosomal RNA in the aminoacyl-tRNA site (A site) cause misreading of the genetic code and inhibit translocation. Structures of an A site RNA oligonucleotide free in solution and bound to the aminoglycosides paromomycin or gentamicin C1a have been determined by NMR. Recently, the X-ray crystal structure of the entire 30S subunit has been determined, free and bound to paromomycin. Distinct differences were observed in the crystal structure, particularly at A1493. Here, the NMR structure of the oligonucleotide-paromomycin complex was determined with higher precision and is compared with the X-ray crystal structure of the 30S subunit complex. The comparison shows the validity of both structures in identifying critical interactions that affect ribosome function.  相似文献   
78.
The seven-residue peptide GNNQQNY from the N-terminal region of the yeast prion protein Sup35, which forms amyloid fibers, colloidal aggregates and highly ordered nanocrystals, provides a model system for characterizing the elusively protean cross-beta conformation. Depending on preparative conditions, orthorhombic and monoclinic crystals with similar lath-shaped morphology have been obtained. Ultra high-resolution (<0.5A spacing) electron diffraction patterns from single nanocrystals show that the peptide chains pack in parallel cross-beta columns with approximately 4.86A axial spacing. Mosaic striations 20-50 nm wide observed by electron microscopy indicate lateral size-limiting crystal growth related to amyloid fiber formation. Frequently obtained orthorhombic forms, with apparent space group symmetry P2(1)2(1)2(1), have cell dimensions ranging from /a/=22.7-21.2A, /b/=39.9-39.3A, /c/=4.89-4.86A for wet to dried states. Electron diffraction data from single nanocrystals, recorded in tilt series of still frames, have been mapped in reciprocal space. However, reliable integrated intensities cannot be obtained from these series, and dynamical electron diffraction effects present problems in data analysis. The diversity of ordered structures formed under similar conditions has made it difficult to obtain reproducible X-ray diffraction data from powder specimens; and overlapping Bragg reflections in the powder patterns preclude separated structure factor measurements for these data. Model protofilaments, consisting of tightly paired, half-staggered beta strands related by a screw axis, can be fit in the crystal lattices, but model refinement will require accurate structure factor measurements. Nearly anhydrous packing of this hydrophilic peptide can account for the insolubility of the crystals, since the activation energy for rehydration may be extremely high. Water-excluding packing of paired cross-beta peptide segments in thin protofilaments may be characteristic of the wide variety of anomalously stable amyloid aggregates.  相似文献   
79.
We have investigated the effects of two heat shock proteins, Hsp10 and Hsp60, on insulin-like growth factor-1 receptor (IGF-1R) signaling in cardiac muscle cells. Neonatal cardiomyocytes were transduced with Hsp10 or Hsp60 via adenoviral vector. Compared with the cells transduced with a control vector, overexpression of Hsp10 or Hsp60 increased the abundance of IGF-1R and IGF-1-stimulated receptor autophosphorylation. Thus, Hsp10 and Hsp60 overexpression increased the number of functioning receptors and amplified activation of IGF-1R signaling. IGF-1 stimulation of MEK, Erk, p90Rsk, and Akt were accordingly augmented. Transducing cardiomyocytes with antisense Hsp60 oligonucleotides reduced Hsp60 expression, decreased the abundance of IGF-1R, attenuated IGF-1R autophosphorylation, and suppressed the pro-survival action of IGF-1 in cardiomyocytes. Using cycloheximide to inhibit protein synthesis did not alter the effect of Hsp60 on IGF-1R signaling, and IGF-1R mRNA levels were not up-regulated by Hsp10 or Hsp60. Additional experiments showed that Hsp10 and Hsp60 suppressed polyubiquitination of IGF-1 receptor. These data indicate that Hsp10 and Hsp60 can modulate IGF-1R signaling through post-translational modification. In animal models of diabetes, diabetic myocardium is associated with decreased abundance of Hsp60, increased ubiquitination of IGF-1R, and lower level of IGF-1R protein. Declined myocardial protection is a major feature of diabetic cardiomyopathy. These data suggest that decreased Hsp60 expression and subsequent decline of IGF-1R signaling may be a fundamental mechanism underlying the development of diabetic cardiomyopathy.  相似文献   
80.
Slow inactivation in voltage-gated sodium channels is a biophysical process that governs the availability of sodium channels over extended periods of time. Slow inactivation, therefore, plays an important role in controlling membrane excitability, firing properties, and spike frequency adaptation. Defective slow inactivation is associated with several diseases of cell excitability, such as hyperkalemic periodic paralysis, myotonia, idiopathic ventricular fibrillation and long-QT syndrome. These associations underscore the physiological importance of this phenomenon. Nevertheless, our understanding of the molecular substrates for slow inactivation is still fragmentary. This review covers the current state of knowledge concerning the molecular underpinnings of slow inactivation, and its relationship with other biophysical processes of voltage-gated sodium channels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号